Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
JCO Precis Oncol ; 8: e2300567, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579192

RESUMEN

PURPOSE: There are limited data available on the real-world patterns of molecular testing in men with advanced prostate cancer. We thus sought to evaluate next-generation sequencing (NGS) testing in the United States, focused on single versus serial NGS testing, the different disease states of testing (hormone-sensitive v castration-resistant, metastatic vs nonmetastatic), tissue versus plasma circulating tumor DNA (ctDNA) assays, and how often actionable data were found on each NGS test. METHODS: The Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort clinical-genomic database was used for this retrospective analysis, including 1,597 patients across 15 institutions. Actionable NGS data were defined as including somatic alterations in homologous recombination repair genes, mismatch repair deficiency, microsatellite instability (MSI-high), or a high tumor mutational burden ≥10 mut/MB. RESULTS: Serial NGS testing (two or more NGS tests with specimens collected more than 60 days apart) was performed in 9% (n = 144) of patients with a median of 182 days in between test results. For the second NGS test and beyond, 82.1% (225 of 274) of tests were from ctDNA assays and 76.1% (217 of 285) were collected in the metastatic castration-resistant setting. New actionable data were found on 11.1% (16 of 144) of second NGS tests, with 3.5% (5 of 144) of tests detecting a new BRCA2 alteration or MSI-high. A targeted therapy (poly (ADP-ribose) polymerase inhibitor or immunotherapy) was given after an actionable result on the second NGS test in 31.3% (5 of 16) of patients. CONCLUSION: Repeat somatic NGS testing in men with prostate cancer is infrequently performed in practice and can identify new actionable alterations not present with initial testing, suggesting the utility of repeat molecular profiling with tissue or blood of men with metastatic castration-resistant prostate cancer to guide therapy choices.


Asunto(s)
Antineoplásicos , ADN Tumoral Circulante , Neoplasias de la Próstata , Masculino , Humanos , Estudios Retrospectivos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/tratamiento farmacológico , ADN Tumoral Circulante/genética , Antineoplásicos/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
JAMA Netw Open ; 6(9): e2334208, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37721753

RESUMEN

Importance: Black men have higher incidence and mortality from prostate cancer. Whether precision oncology disparities affect Black men with metastatic castration-resistant prostate cancer (mCRPC) is unknown. Objective: To compare precision medicine data and outcomes between Black and White men with mCRPC. Design, Setting, and Participants: This retrospective cohort study used data collected by the Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) consortium, a multi-institutional registry with linked clinicogenomic data, from April 2020 to December 2021. Participants included Black and White patients with mCRPC with molecular data. Data were analyzed from December 2021 to May 2023. Exposures: Database-reported race and ethnicity. Main Outcomes and Measures: The primary outcome was the frequency of actionable molecular data, defined as the presence of mismatch repair deficiency (MMRD) or high microsatellite instability (MSI-H), homologous recombination repair deficiency, or tumor mutational burden of 10 mutations per megabase or greater. Secondary outcomes included the frequency of other alterations, the type and timing of genomic testing performed, and use of targeted therapy. Efficacy outcomes were prostate-specific antigen response rate, site-reported radiographic response, and overall survival. Results: A total of 962 eligible patients with mCRPC were identified, including 204 Black patients (21.2%; median [IQR] age at diagnosis, 61 [55-67] years; 131 patients [64.2%] with Gleason scores 8-10; 92 patients [45.1%] with de novo metastatic disease) and 758 White patients (78.8%; median [IQR] age, 63 [57-69] years; 445 patients [58.7%] with Gleason scores 8-10; 310 patients [40.9%] with de novo metastatic disease). Median (IQR) follow-up from mCRPC was 26.6 (14.2-44.7) months. Blood-based molecular testing was more common in Black men (111 men [48.7%]) than White men (317 men [36.4%]; P < .001). Rates of actionable alterations were similar between groups (65 Black men [32.8%]; 215 White men [29.1%]; P = .35), but MMRD or MSI-H was more common in Black men (18 men [9.1]) than White men (36 men [4.9%]; P = .04). PTEN alterations were less frequent in Black men than White men (31 men [15.7%] vs 194 men [26.3%]; P = .003), as were TMPRSS alterations (14 men [7.1%] vs 155 men [21.0%]; P < .001). No other differences were seen in the 15 most frequently altered genes, including TP53, AR, CDK12, RB1, and PIK3CA. Matched targeted therapy was given less frequently in Black men than White men (22 men [33.5%] vs 115 men [53.5%]; P = .008). There were no differences in response to targeted therapy or survival between the two cohorts. Conclusions and Relevance: This cohort study of men with mCRPC found higher frequency of MMRD or MSI-H and lower frequency of PTEN and TMPRSS alterations in Black men compared with White men. Although Black men received targeted therapy less frequently than White men, no differences were observed in clinical outcomes.


Asunto(s)
Medicina de Precisión , Neoplasias de la Próstata Resistentes a la Castración , Anciano , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata Resistentes a la Castración/etnología , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/terapia , Estudios Retrospectivos , Población Blanca/genética , Negro o Afroamericano/genética , Metástasis de la Neoplasia , Biomarcadores de Tumor/genética
3.
BMC Cancer ; 23(1): 672, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464317

RESUMEN

BACKGROUND: A majority of prostate cancer cells are in a non-proliferating, G0 (quiescent) phase of the cell cycle and may lie dormant for years before activation into a proliferative, rapidly progressing, disease phase. Many mechanisms which influence proliferation and quiescence choices remain to be elucidated, including the role of non-coding RNAs. In this study, we investigated the role of a long non-coding RNA (lncRNA), SNHG1, on cell proliferation, quiescence, and sensitivity to docetaxel as a potential factor important in prostate cancer biology. METHODS: Publically available, anonymous, clinical data was obtained from cBioPortal for analysis. RNAi and prostate cancer cell lines were utilized to investigate SNHG1 in vitro. We measured G0 cells, DNA synthesis, and cell cycle distribution by flow cytometry. Western blotting was used to assess G2 arrest and apoptosis. These parameters were also investigated following docetaxel treatment. RESULTS: We discovered that in prostate cancer patients from The Cancer Genome Atlas (TCGA) data set, high SNHG1 expression in localized tumors correlated with reduced progression-free survival, and in a data set of both primary and metastatic tumors, high SNHG1 expression was associated with metastatic tumors. In vitro analysis of prostate cancer cell lines showed SNHG1 expression correlated with a quiescent versus proliferative phenotype. Knockdown of SNHG1 by RNAi in PC3 and C4-2B cells resulted in an accumulation of cells in the G0 phase. After knockdown, 60.0% of PC3 cells were in G0, while control cultures had 13.2% G0. There were reciprocal decreases in G1 phase, but little impact on the proportion of cells in S and G2/M phases, depending on cell line. DNA synthesis and proliferation were largely halted- decreasing by 75% and 81% in C4-2B and PC3 cells, respectively. When cells were treated with docetaxel, SNHG1-depleted C4-2B and PC3 cells were resistant to G2 arrest, and displayed reduced apoptosis, as indicated by reduced cyclin B1 and cleaved caspase 3, suggesting SNHG1 levels may modulate drug response. CONCLUSIONS: Overall, these results indicate SNHG1 has complex roles in prostate cancer, as it stimulates cell cycle entry and disease progression, but sensitizes cells to docetaxel treatment.


Asunto(s)
Neoplasias de la Próstata , ARN Largo no Codificante , Humanos , Masculino , Docetaxel/farmacología , División Celular , Proliferación Celular/genética , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Apoptosis/genética , Línea Celular Tumoral , ADN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Prostate ; 83(12): 1193-1200, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37211866

RESUMEN

BACKGROUND: Bone is the most common site of metastases in men with prostate cancer. The objective of this study was to explore potential racial differences in the distribution of tumor metastases in the axial and appendicular skeleton. METHODS: We conducted a retrospective review of patients with metastatic prostate cancer to the bone as detected by 18 F-sodium fluoride positron emission tomography/computed tomography (18 F-NaF PET/CT) scans. In addition to describing patients' demographics and clinical characteristics, the metastatic bone lesions, and healthy bone regions were detected and quantified volumetrically using a quantitative imaging platform (TRAQinform IQ, AIQ Solutions). RESULTS: Forty men met the inclusion criteria with 17 (42%) identifying as African Americans and 23 (58%) identifying as non-African Americans. Most of the patients had axial (skull, ribcage, and spine) disease. The location and the number of lesions in the skeleton of metastatic prostate cancer patients with low disease burden were not different by race. CONCLUSIONS: In low-disease burden patients with metastatic prostate cancer, there were no overall differences by race in the location and number of lesions in axial or appendicular skeleton. Therefore, given equal access to molecular imaging, African Americans might derive similar benefits. Whether this holds true for patients with a higher disease burden or for other molecular imaging techniques is a topic for further study.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Fluoruro de Sodio , Radioisótopos de Flúor , Tomografía de Emisión de Positrones/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/secundario
5.
Transl Oncol ; 31: 101642, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36805918

RESUMEN

Quiescent prostate cancer (PCa) cells are common in tumors but are often resistant to chemotherapy. Quiescent PCa cells are also enriched for a stem-like tumor initiating population, and can lead to recurrence after dormancy. Unfortunately, quiescent PCa cells are difficult to identify and / or target with treatment in part because the relevant markers are intracellular and regulated by protein stability. We addressed this problem by utilizing PCa cells expressing fluorescent markers for CDKN1B (p27) and CDT1, which can separate viable PCa cells into G0, G1, or combined S/G2/M populations. We used FACS to collect G1 and G0 PC3 PCa cells, isolated membrane proteins, and analyzed protein abundance in G0 vs G1 cells by gas chromatography mass spectrometry. Enrichment analysis identified nucleocytoplasmic transport as the most significantly different pathway. To identify cell surface proteins potentially identifying quiescent PCa cells for future patient samples or for antibody based therapeutic research, we focused on differentially abundant plasma membrane proteins, and identified ERBB2 (HER2) as a cell surface protein enriched on G0 PCa cells. High HER2 on the cell membrane is associated with quiescence in PCa cells and likely induced by the bone microenvironment. Using a drug conjugated anti-HER2 antibody (trastuzumab emtansine) in a mouse PCa xenograft model delayed metastatic tumor growth, suggesting approaches that target HER2-high cells may be beneficial in treating PCa. We propose that HER2 is deserving of further study in PCa as a target on quiescent cells to prevent recurrence, decrease chemotherapy resistance, or eradicate minimal residual disease.

7.
Clin Genitourin Cancer ; 20(6): 524-532, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35864053

RESUMEN

INTRODUCTION: Patients with mCSPC experience a longer overall survival with treatment intensification by addition of novel hormonal therapy (NHT) or docetaxel to androgen deprivation vs androgen deprivation alone. Real-world data report, however, that nearly half of mCSPC patients do not receive treatment intensification. In this study, treatment patterns and utilization of treatment intensification in mCSPC patients were described using the IQVIA Anonymized Patient Longitudinal Data, a dataset of fully adjudicated pharmacy and medical claims. PATIENTS AND METHODS: Reports on first line (1L) treatment patterns were obtained for years 2015 to 2021. Medicaid, Medicare, Medicare part D, cash transactions, and commercial data were included for years 2012 to 2021. RESULTS: Nationwide, of 66,844 men with newly diagnosed mCSPC since 2015, on average 25% were prescribed NHT, and another 12% were prescribed chemotherapy. No differences were noted in treatment patterns based on U.S. regions and/or rural vs. urban communities. The disparity was observed in prescribing patterns between oncology and urology providers. Oncology providers prescribed 1L NHT on average 32% of the time, while urology providers did so 12% of the time. Furthermore, oncology providers prescribed chemotherapy on average 20% of the time, resulting in 52% of men with mCSPC receiving treatment intensification as 1L therapy. Patients' age group, community or health insurance did not account for the disparity between the 2 specialties. CONCLUSION: Both medical oncology and urology providers need to improve their treatment intensification efforts for men with mCSPC to increase their patients' overall survival.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Neoplasias de la Próstata , Estados Unidos , Masculino , Humanos , Anciano , Neoplasias de la Próstata/patología , Antagonistas de Andrógenos/uso terapéutico , Andrógenos , Resultado del Tratamiento , Medicare , Castración , Neoplasias de la Próstata Resistentes a la Castración/patología
8.
Cancer Lett ; 524: 103-108, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34624433

RESUMEN

Prostate cancer can progress rapidly after diagnosis, but can also become undetectable after curative intent radiation or surgery, only to recur years or decades later. This capacity to lie dormant and recur long after a patient was thought to be cured, is relatively unique to prostate cancer, with estrogen receptor positive breast cancer being the other common and well-studied example. Most investigators agree that the bone marrow is an important site for dormant tumor cells, given the frequency of bone metastases and that multiple studies have reported disseminated tumor cells in patients with localized disease. However, while more difficult to study, lymph nodes and the prostate bed are likely to be important reservoirs as well. Dormant tumor cells may be truly quiescent and in the G0 phase of the cell cycle, which is commonly called cellular dormancy. However, tumor growth may also be held in check through a balance of proliferation and cell death (tumor mass dormancy). For induction of cellular dormancy, prostate cancer cells respond to signals from their microenvironment, including TGF-ß2, BMP-7, GAS6, and Wnt-5a, which result in signals transduced in part through p38 MAPK and pluripotency associated transcription factors including SOX2 and NANOG, which likely affect the epi-genome through histone modification. Clinical use of adjuvant radiation or androgen deprivation has been modestly successful to prevent recurrence. With the rapid pace of discovery in this field, systemic adjuvant therapy is likely to continue to improve in the future.


Asunto(s)
Muerte Celular/genética , Proliferación Celular/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/genética , Microambiente Tumoral/genética , Proteína Morfogenética Ósea 7/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Proteína Homeótica Nanog/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata/patología , Factores de Transcripción SOXB1/genética , Factor de Crecimiento Transformador beta2/genética , Proteína Wnt-5a/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética
9.
Prostate Cancer Prostatic Dis ; 25(3): 388-396, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363009

RESUMEN

PURPOSE: Prostate cancer is a heterogeneous disease with variable clinical outcomes. Despite numerous recent approvals of novel therapies, castration-resistant prostate cancer remains lethal. A "real-world" clinical-genomic database is urgently needed to enhance our characterization of advanced prostate cancer and further enable precision oncology. METHODS: The Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort (PROMISE) is a consortium whose aims are to establish a repository of de-identified clinical and genomic patient data that are linked to patient outcomes. The consortium structure includes a (1) bio-informatics committee to standardize genomic data and provide quality control, (2) biostatistics committee to independently perform statistical analyses, (3) executive committee to review and select proposals of relevant questions for the consortium to address, (4) diversity/inclusion committee to address important clinical questions pertaining to racial disparities, and (5) patient advocacy committee to understand patient perspectives to improve patients' quality of care. RESULTS: The PROMISE consortium was formed by 16 academic institutions in early 2020 and a secure RedCap database was created. The first patient record was entered into the database in April 2020 and over 1000 records have been entered as of early 2021. Data entry is proceeding as planned with the goal to have over 2500 patient records by the end of 2021. CONCLUSIONS: The PROMISE consortium provides a powerful clinical-genomic platform to interrogate and address data gaps that have arisen with increased genomic testing in the clinical management of prostate cancer. The dataset incorporates data from patient populations that are often underrepresented in clinical trials, generates new hypotheses to direct further research, and addresses important clinical questions that are otherwise difficult to investigate in prospective studies.


Asunto(s)
Neoplasias de la Próstata , Genómica , Humanos , Masculino , Oncología Médica , Medicina de Precisión , Estudios Prospectivos , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia
10.
Front Cell Dev Biol ; 9: 728663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34957090

RESUMEN

The proliferation-quiescence decision is a dynamic process that remains incompletely understood. Live-cell imaging with fluorescent cell cycle sensors now allows us to visualize the dynamics of cell cycle transitions and has revealed that proliferation-quiescence decisions can be highly heterogeneous, even among clonal cell lines in culture. Under normal culture conditions, cells often spontaneously enter non-cycling G0 states of varying duration and depth. This also occurs in cancer cells and G0 entry in tumors may underlie tumor dormancy and issues with cancer recurrence. Here we show that a cell cycle indicator previously shown to indicate G0 upon serum starvation, mVenus-p27K-, can also be used to monitor spontaneous quiescence in untransformed and cancer cell lines. We find that the duration of spontaneous quiescence in untransformed and cancer cells is heterogeneous and that a portion of this heterogeneity results from asynchronous proliferation-quiescence decisions in pairs of daughters after mitosis, where one daughter cell enters or remains in temporary quiescence while the other does not. We find that cancer dormancy signals influence both entry into quiescence and asynchronous proliferation-quiescence decisions after mitosis. Finally, we show that spontaneously quiescent prostate cancer cells exhibit altered expression of components of the Hippo pathway and are enriched for the stem cell markers CD133 and CD44. This suggests a hypothesis that dormancy signals could promote cancer recurrence by increasing the proportion of quiescent tumor cells poised for cell cycle re-entry with stem cell characteristics in cancer.

12.
Life (Basel) ; 11(10)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34685470

RESUMEN

Wnt family proteins and ß-catenin are critical for the regulation of many developmental and oncogenic processes. Wnts are secreted protein ligands which signal using a canonical pathway, and involve the transcriptional co-activator ß-catenin or non-canonical pathways that are independent of ß-catenin. Bone metastasis is unfortunately a common occurrence in prostate cancer and can be conceptualized as a series of related steps or processes, most of which are regulated by Wnt ligands and/or ß-catenin. At the primary tumor site, cancer cells often take on mesenchymal properties, termed epithelial mesenchymal transition (EMT), which are regulated in part by the Wnt receptor FZD4. Then, Wnt signaling, especially Wnt5A, is of importance as the cells circulate in the blood stream. Upon arriving in the bones, cancer cells migrate and take on stem-like or tumorigenic properties, as aided through Wnt or ß-catenin signaling involving CHD11, CD24, and Wnt5A. Additionally, cancer cells can become dormant and evade therapy, in part due to regulation by Wnt5A. In the bones, E-selectin can aid in the reversal of EMT, a process termed mesenchymal epithelial transition (MET), as a part of metastatic tumorigenesis. Once bone tumors are established, Wnt/ß-catenin signaling is involved in the suppression of osteoblast function largely through DKK1.

13.
J Bone Oncol ; 30: 100386, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34466376

RESUMEN

Prostate cancer (PCa) metastasis research has been hamstrung by lack of animal models that closely resemble the disease present in most patients - that metastasize to bone, are dependent on the androgen receptor (AR), and grow in an immune competent host. Here, we adapt the Myc-CaP cell line for use as a PCa androgen dependent, immune competent bone metastases model and characterize the metastases. After injection into the left cardiac ventricle of syngeneic FVB/NJ mice, these cells formed bone metastases in the majority of animals; easily visible on H&E sections and confirmed by immunohistochemistry for Ar and epithelial cell adhesion molecule. Mediastinal tumors were also observed. We also labeled Myc-CaP cells with tdTomato, and confirmed the presence of cancer cells in bone by flow cytometry. To adapt the model to a bone predominant metastasis pattern and further examine the bone phenotype, we labeled the cells with luciferase, injected in the tibia and observed tumor formation only in tibia with a mixed osteolytic/osteoblastic phenotype. The presence of Myc-CaP tumors significantly increased tibia bone volume as compared to sham injected controls. The osteoclast marker, TRAcP-5b was not significantly changed in plasma from tibial tumor bearing animals vs. sham animals. However, conditioned media from Myc-CaP cells stimulated osteoclast formation in vitro from FVB/NJ mouse bone marrow. Overall, Myc-CaP cells injected in the left ventricle or tibia of syngeneic mice recapitulate key aspects of human metastatic PCa.

14.
Am Soc Clin Oncol Educ Book ; 41: 1-12, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33979195

RESUMEN

Despite notable screening, diagnostic, and therapeutic advances, disparities in prostate cancer incidence and outcomes remain prevalent. Although commonly discussed in the context of men of African descent, disparities also exist based on socioeconomic level, education level, and geographic location. The factors in these disparities span systemic access issues affecting availability of care, provider awareness, and personal patient views and mistrust. In this review, we will discuss common themes that patients have noted as impediments to care. We will review how equitable access to care has helped improve outcomes among many different groups of patients, including those with local disease and those with metastatic castration-resistant prostate cancer. Even with more advanced presentation, challenges with recommended screening, and lower rates of genomic testing and trial inclusion, Black populations have benefited greatly from various modalities of therapy, achieving comparable and at times superior outcomes with certain types of immunotherapy, chemotherapy, androgen receptor-based inhibitors, and radiopharmaceuticals in advanced disease. We will also briefly discuss access to genomic testing and differences in patterns of gene expression among Black patients and other groups that are traditionally underrepresented in trials and genomic cohort studies. We propose several strategies on behalf of providers and institutions to help promote more equitable care access environments and continued decreases in prostate cancer disparities across many subgroups.


Asunto(s)
Neoplasias de la Próstata , Negro o Afroamericano , Humanos , Inmunoterapia , Masculino , Tamizaje Masivo , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/epidemiología , Neoplasias de la Próstata/terapia
15.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008431

RESUMEN

The substantial biological heterogeneity of metastatic prostate cancer has hindered the development of personalized therapeutic approaches. Therefore, it is difficult to predict the course of metastatic hormone-sensitive prostate cancer (mHSPC), with some men remaining on first-line androgen deprivation therapy (ADT) for several years while others progress more rapidly. Improving our ability to risk-stratify patients would allow for the optimization of systemic therapies and support the development of stratified prospective clinical trials focused on patients likely to have the greatest potential benefit. Here, we applied a liquid biopsy approach to identify clinically relevant, blood-based prognostic biomarkers in patients with mHSPC. Gene expression indicating the presence of CTCs was greater in CHAARTED high-volume (HV) patients (52% CTChigh) than in low-volume (LV) patients (23% CTChigh; * p = 0.03). HV disease (p = 0.005, q = 0.033) and CTC presence at baseline prior to treatment initiation (p = 0.008, q = 0.033) were found to be independently associated with the risk of nonresponse at 7 months. The pooled gene expression from CTCs of pre-ADT samples found AR, DSG2, KLK3, MDK, and PCA3 as genes predictive of nonresponse. These observations support the utility of liquid biomarker approaches to identify patients with poor initial response. This approach could facilitate more precise treatment intensification in the highest risk patients.


Asunto(s)
Biomarcadores de Tumor/genética , Resistencia a Antineoplásicos , Perfilación de la Expresión Génica/métodos , Células Neoplásicas Circulantes/química , Neoplasias de la Próstata/genética , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Antígenos de Neoplasias/genética , Desmogleína 2/genética , Humanos , Calicreínas/genética , Masculino , Midkina/genética , Reacción en Cadena de la Polimerasa Multiplex , Medicina de Precisión , Pronóstico , Estudios Prospectivos , Antígeno Prostático Específico/genética , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/genética
16.
Neoplasia ; 23(1): 102-111, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296752

RESUMEN

Prostate cancer (PCa) commonly metastasizes to the bone where the cells frequently undergo dormancy. The escape of disseminated tumor cells from cellular dormancy is a major cause of recurrence in marrow. Abscisic acid (ABA), a phytohormone, is known to regulate dormancy of plant seeds and to regulate other stress responses in plants. Recently, ABA was found to be synthesized by mammals cells and has been linked to human disease. Yet the role of ABA in regulating tumor dormancy or reactivation is unknown. We found that ABA is produced by human marrow cells, and exogenous ABA inhibits PCa cell proliferation while increasing the expression of p27, p21, and p16 and decreasing the expression of the proliferation marker, Ki67. Further, ABA significantly increased the percentage of PCa cells in the G0 phase of the cell cycle as well as the duration the cells were arrested in G0. We found that ABA regulates an increase of PPARγ receptor expression and suppressed phosphorylation of mTOR/p70S6K signaling and resulting in the induction of the cellular dormancy. We then confirmed that ABA regulates G0 cell cycle arrest through PPARγ receptor signaling in vitro and under co-culture conditions with osteoblasts. Finally, we demonstrate that ABA regulates PCa dormancy in vivo following intratibial injection in an animal model. Together these data suggest that the ABA and PPARγ signaling pathways contribute to the establishment of PCa cellular dormancy in the bone marrow microenvironment. These findings may suggest critical pathways for targeting metastatic disease.


Asunto(s)
Ácido Abscísico/farmacología , Médula Ósea/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias de la Próstata/patología , Animales , Biomarcadores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Metástasis de la Neoplasia , PPAR gamma/metabolismo , Fase de Descanso del Ciclo Celular , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
18.
Prostate ; 80(13): 1145-1156, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659025

RESUMEN

BACKGROUND: Epithelial stem cells (ESCs) demonstrate a capacity to maintain normal tissues homeostasis and ESCs with a deregulated behavior can contribute to cancer development. The ability to reprogram normal tissue epithelial cells into prostate or mammary stem-like cells holds great promise to help understand cell of origin and lineage plasticity in prostate and breast cancers in addition to understanding normal gland development. We previously showed that an intracellular chemokine, CXCL12γ induced cancer stem cells and neuroendocrine characteristics in both prostate and breast adenocarcinoma cell lines. However, its role in normal prostate or mammary epithelial cell fate and development remains unknown. Therefore, we sought to elucidate the functional role of CXCL12γ in the regulation of ESCs and tissue development. METHODS: Prostate epithelial cells (PNT2) or mammary epithelial cells (MCF10A) with overexpressed CXCL12γ was characterized by quantitative real-time polymerase chain reaction, Western blots, and immunofluorescence for lineage marker expression, and fluorescence activated cell sorting analyses and sphere formation assays to examine stem cell surface phenotype and function. Xenotransplantation animal models were used to evaluate gland or acini formation in vivo. RESULTS: Overexpression of CXCL12γ promotes the reprogramming of cells with a differentiated luminal phenotype to a nonluminal phenotype in both prostate (PNT2) and mammary (MCF10A) epithelial cells. The CXCL12γ-mediated nonluminal type cells results in an increase of epithelial stem-like phenotype including the subpopulation of EPCAMLo /CD49fHi /CD24Lo /CD44Hi cells capable of sphere formation. Critically, overexpression of CXCL12γ promotes the generation of robust gland-like structures from both prostate and mammary epithelial cells in in vivo xenograft animal models. CONCLUSIONS: CXCL12γ supports the reprogramming of epithelial cells into nonluminal cell-derived stem cells, which facilitates gland development.


Asunto(s)
Quimiocina CXCL12/biosíntesis , Glándulas Mamarias Humanas/crecimiento & desarrollo , Próstata/crecimiento & desarrollo , Animales , Reprogramación Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Xenoinjertos , Humanos , Masculino , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Ratones , Próstata/citología , Próstata/metabolismo , Isoformas de Proteínas
19.
Transl Oncol ; 13(7): 100781, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32361123

RESUMEN

Men diagnosed with localized prostate cancer can develop metastases many years after initial treatment, resulting in a poor prognosis. The purpose of this study was to investigate the mechanisms by which signaling through norepinephrine (NE) may incite relapse of quiescent prostate cancer. We used an unbiased bioinformatics pipeline to examine mechanisms for recurrence related to sympathetic signaling in the bone marrow. A transcription factor cell array identified ATF1, RAR, and E2F as key nodes in prostate cancer cells exiting quiescence through adrenergic signaling. Subsequent secretome analysis identified GAS6 as affecting activity of these three factors, leading to cell cycle reentry. GAS6 expression was downregulated in osteoblasts through activation of the cAMP pathway and was targeted in vitro and in vivo using pharmacological agents (propranolol and phentolamine). Propranolol increased expression of GAS6 by osteoblasts, and phentolamine significantly inhibited expression. Propranolol treatment was sufficient to both increase GAS6 expression in marrow osteoblasts as well as eliminate the effects of NE signaling on GAS6 expression. These results demonstrate a strong correlation between adrenergic signaling, GAS6 expression, and recurrence in prostate cancer, suggesting a novel therapeutic direction for patients at high risk of metastasis.

20.
Transl Oncol ; 13(4): 100747, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32217460

RESUMEN

Wnt signaling has been implicated as a driver of prostate cancer-related osteoblast differentiation, and previous studies have linked modifications in Wnt function with the induction of tumor metastasis. A unique aspect of prostate cancer bone metastases in mouse models is their relative predilection to the hindlimb (femur) compared to the forelimb (humerus). Comparative gene expression profiling was performed within the humerus and femur from non-tumor-bearing mice to evaluate differences in the microenvironments of these locations. This revealed the relative overexpression of the Wnt signaling inhibitors WIF1 and SOST in the humerus compared to the femur, with increased WNT5A expression in femur bone marrow, suggesting a coordinated upregulation of Wnt signals within the femur compared to the humerus. Conditioned medium (CM) from bone marrow stromal cells (HS-5 cells) was used to mimic the bone marrow microenvironment, which strongly promoted prostate cancer cell invasion (3.3-fold increase in PC3 cells, P < .05; 7-fold increase in LNCaP cells, P < .05). WNT5A shRNA knockdown within the CM-producing HS-5 cells significantly decreased PC3 (56%, P < .05) and LNCaP (60%, P < .05) cell invasion. Similarly, preincubation of CM with WIF1 significantly blocked LNCaP cell invasion (40%, P < .05). shRNA-mediated knockdown of the Wnt receptors FZD4 and FZD8 also strongly inhibited tumor cell invasion (60% inhibition shFZD4, P < .05; 63% shFZD8, P < .05). Furthermore, small molecule inhibition of JNK, which is an important component of the noncanonical Wnt signaling pathway, significantly inhibited CM-mediated tumor invasion. Overall, this study reveals a role for Wnt signaling as a driver of prostate cancer bone metastatic tropism and invasion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA